15 yıl deneyimli BOĞAZİÇİLİ hocadan birebir ve skype üzerinden LİNEER cebir özel ders
Boğaziçi Üniversitesi,İtanbul TEKNİK ÜNİVERSİTESİ,Bilgi Üniversitesi,Koç Üniversitesi,Işık Üniversitesi, İstanbul Üniversitesi,Yıldız Üniversitesi ,Yeditepe Üniversitesi Haliç Üniversitesi Beykent Üniversitesi ,Doğuş Üniversitesi,Kadir HAS , Okan UNİVERSİTESİ,Özyeğin ÜNİVERSİTESİ, Maltepe ÜNİVERSİTESİ, Yeni YÜZYİL ÜN.,ve Kültür Üniversitelerinin ekonomi işletme ,bilgisayar mühendisliği,ekonomi bölümü,insaat mühendisliği ,uluslararasi iliskiler ve çalışma ekonomisi gibi bölümlerde okuyan onlarca üniversite öğrencisine özel dersler verdim.
1.1 Vectors and Linear Combinations
1.2 Lengths and Dot Products
1.3 Matrices
2.1 Vectors and Linear Equations
2.2 The Idea of Elimination
2.3 Elimination Using Matrices
2.4 Rules for Matrix Operations
2.5 Inverse Matrices
2.6 Elimination = Factorization: A = LU
2.7 Transposes and Permutations
3.1 Spaces of Vectors
3.2 The Nullspace of A: Solving Ax = 0
3.3 The Rank and the Row Reduced Form
3.4 The Complete Solution to Ax = b
3.5 Independence, Basis, and Dimension
3.6 Dimensions of the Four Subspaces
4.1 Orthogonality of the Four Subspaces
4.2 Projections
4.3 Least Squares Approximations
4.4 Orthogonal Bases and Gram-Schmidt
5.1 The Properties of Determinants
5.2 Permutations and Cofactors
5.3 Cramer's Rule, Inverses, and Volumes
6.1 Introduction to Eigenvalues
6.2 Diagonalizing a Matrix
6.3 Applications to Differential Equations
6.4 Symmetric Matrices
6.5 Positive Definite Matrices
6.6 Similar Matrices
6.7 Singular Value Decomposition (SVD)
7.1 The Idea of a Linear Transformation
7.2 The Matrix of a Linear Transformation
7.3 Diagonalization and the Pseudoinverse
8.1 Matrices in Engineering
8.2 Graphs and Networks
8.3 Markov Matrices, Population, and Economics
8.4 Linear Programming
8.5 Fourier Series: Linear Algebra for Functions
8.6 Linear Algebra for Statistics and Probability
8.7 Computer Graphics
9.1 Gaussian Elimination in Practice
9.2 Norms and Condition Numbers
9.3 Iterative Methods and Preconditioners
10.1 Complex Numbers
10.2 Hermitian and Unitary Matrices
10.3 The Fast Fourier Transform